- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0003100000000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Godley, A. (3)
-
Litman, D. (3)
-
Olshefski, C. (3)
-
Lugini, L. (2)
-
Singh, R. (2)
-
Afrin, T. (1)
-
Godley, A (1)
-
Hwa, R. (1)
-
Kashefi, O. (1)
-
Litman, D (1)
-
Tran, N (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
null (2)
-
Cristea, A.I. (1)
-
Dimitrova, V. (1)
-
Matsuda, N. (1)
-
Rodrigo, M.M. (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Collaborative argumentation enables students to build disciplinary knowledge and to think in disciplinary ways. We use Large Language Models (LLMs) to improve existing methods for collaboration classification and argument identification. Results suggest that LLMs are effective for both tasks and should be considered as a strong baseline for future research.more » « lessFree, publicly-accessible full text available October 25, 2026
-
Litman, D.; Afrin, T.; Kashefi, O.; Olshefski, C.; Godley, A.; Hwa, R. (, Artificial Intelligence in Education.)Rodrigo, M.M.; Matsuda, N.; Cristea, A.I.; Dimitrova, V. (Ed.)This paper presents the design and evaluation of an automated writing evaluation system that integrates natural language processing (NLP) and user interface design to support students in an important writing skill, namely, self-monitored revising. Results from a classroom deployment suggest that NLP can accurately analyze where and what kind of revisions students make across paper drafts, that students engage in self-monitored revising, and that the interfaces for visualizing the NLP results are perceived by students to be useful.more » « less
-
Lugini, L.; Olshefski, C.; Singh, R.; Litman, D.; Godley, A. (, Conference Proceedings of the 28th International Conference on Computational Linguistics)null (Ed.)
-
Olshefski, C.; Lugini, L.; Singh, R.; Litman, D.; Godley, A. (, Proceedings of The 12th Language Resources and Evaluation Conference (LREC))null (Ed.)
An official website of the United States government

Full Text Available